SIMULATION OF HEAT TRANSFER FROM CANOPY SURFACES USING LOW-REYNOLDS NUMBER K-ε MODEL
نویسندگان
چکیده
منابع مشابه
Numerical Predictions of Turbulent Mixed Convection Heat Transfer to Supercritical Fluids Using Various Low Reynolds Number k-e Turbulence Models
There are a number of systems in which supercritical cryogenic fluids are used as coolants or propellant fluids. In some modern military aircraft, the fuel is pressurized above its critical point and used as a coolant to remove heat from the aircraft engine. Accurate prediction of heat transfer coefficients to turbulent flows of supercritical fluids is essential in design of such systems. One o...
متن کاملSimulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar
Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...
متن کاملLow Reynolds number flow and heat transfer experiments in 7-rod vertical bundles
Experiments have been conducted in 7-rod vertical bundles within circular shell. Buoyancy supports the forced flow in one and opposes it in the other. The Reynolds number range nominally covered 900 to 30000; but no distinct transition was observed. The behaviour is explained through a porous medium model. Procedures for estimating bundle-average permeability and fRe values on the basis of poro...
متن کاملAsymptotic Exponents from Low-Reynolds-Number Flows
The high-order statistics of fluctuations in velocity gradients in the crossover range from the inertial to the Kolmogorov and sub-Kolmogorov scales are studied by direct numerical simulations (DNS) of homogeneous isotropic turbulence with vastly improved resolution. The derivative moments for orders 0 ≤ n ≤ 8 are represented well as powers of the Reynolds number, Re, in the range 380 ≤ Re ≤ 22...
متن کاملHeat Transfer from Finned Surfaces
conv hAs (Ts T ) where As is the heat transfer surface area and h is the convection heat transfer coefficient. When the temperatures Ts and T are fixed by design considerations, as is often the case, there are two ways to increase the rate of heat transfer: to increase the convection heat transfer coefficient h or to increase the surface area As. Increasing h may require the installation of a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Urban and Environmental Engineering
سال: 2015
ISSN: 1982-3932
DOI: 10.4090/juee.2014.v8n2.186191